Наукові праці. Кафедра загальної практики – сімейної медицини
Permanent URI for this collectionhttps://repo.knmu.edu.ua/handle/123456789/31750
Browse
21 results
Search Results
Item Nerve Conduction and Neuromuscular Transmission in C57Bl/6 Mice with Genetically Determined Peripheral Neuropathy(2019-07) Govbakh, I.; Zavodovskiy, D.; Bulgakova, N.; Sokołowska, I.; Maznychenko, A.; Vasylenko, D.Charcot–Marie–Tooth disease is one of the most widespread forms of hereditary peripheral neuropathy in humans. C57Bl/6 mice are considered the most appropriate animal model for studies of this disease. We measured the conduction velocity in the sciatic nerve (NCV) and amplitude of the M-wave in mice of strains C57Bl/6 and C57Bl. It was found that the mean conduction velocity in the right and left sciatic nerves of C57Bl/6 mice was about 3.5-fold lower than that in C57Bl animals. In the former mice, the mean amplitude of compound nerve action potentials (CNAPs) and that of the M-wave in the m. gastrocnemius-soleus after stimulation of the sciatic nerve were 5- and 4-fold, respectively, lower, than those in the control (C57B1). Thus, the data obtained show that the genetically determined pathology of the peripheral nervous system caused by a mutation of the PMP22 gene results in dramatic negative shifts of the characteristics of conduction via the peripheral nerves and of neuromuscular transmission.Item A Randomized Controlled Phase 2 Dose-Finding Trial to Evaluate the Efficacy and Safety of Camostat in the Treatment of Painful Chronic Pancreatitis: The TACTIC Study(2024-04) Hovbakh, I.; Hart, P.; Osypchuk, Y.; Shah, J.; Nieto, J.; Cote, G.; Avgaitis, S.; Kremzer, O.; Buxbaum, J.; Inamdar, S.; Fass, R.; Phillips, R.; Yadav, D.; Ladd, A.; Al-Assi, T.; Gardner, T.; Conwell, D.; Irani, S.; Sheikh, A.; Nuttall, J.Chronic pancreatitis (CP) causes an abdominal pain syndrome associated with poor quality of life. We conducted a clinical trial to further investigate the efficacy and safety of camostat, an oral serine protease inhibitor that has been used to alleviate pain in CP. This was a double-blind randomized controlled trial that enrolled adults with CP with a baseline average daily worst pain score 4 on a numeric rating system. Participants were randomized (1:1:1:1) to receive camostat at 100, 200, or 300 mg 3 times daily or placebo. The primary end point was a 4-week change from baseline in the mean daily worst pain intensity score (0–10 on a numeric rating system) using a mixed model repeated measure analysis. Secondary end points included changes in alternate pain end points, quality of life, and safety. A total of 264 participants with CP were randomized. Changes in pain from baseline were similar between the camostat groups and placebo, with differences of least squares means of –0.11 (95% CI, –0.90 to 0.68), –0.04 (95% CI, –0.85 to 0.78), and –0.11 (95% CI, –0.94 to 0.73) for the 100 mg, 200 mg, and 300 mg groups, respectively.Treatment-emergent adverse events attributed to the study drug were identified in 42 participants (16.0%). We were not able to reject the null hypothesis of no difference in improvements in pain or quality of life outcomes in participants with painful CP who received camostat compared with placebo. Studies are needed to further define mechanisms of pain in CP to guide future clinical trials, including minimizing placebo responses and selecting targeted therapies. Considering the high morbidity of pain in patients with CP, there remains an unmet need to better understand contributors to the experience of pain in CP and pain phenotypes to guide future clinical trials.Item Coordination of locomotor activity in transgenic C57Bl/6 mice with hereditary neuropathy(2019-09-30) Hovbakh I.,; Zavodovskiy, D.; Bulgakova, N.; Tsupykov, O.; Vasylenko, D.; Maznychenko, A.Locomotor activity of C57Bl/6 mice with hereditary motor and sensory neuropathy (HMSN; an animal model of Charcot–Marie–Tooth, CMT, disease) was investigated in males and females of two ages (15 and 20 weeks) using the balance beam test (inclined beam); such indices as time of traveling via the beam to the shelter and number of slippings of the hindlimbs from the beam were recorded. It was found that C57Bl/6 mice spent dramatically more time for traveling than control C57Bl mice with no neuropathy, and the number of erroneous movements (slippings of the hindlimbs) during traveling in mice with HMSN was many times greater than that in the controls. The deficiency of control of locomotion in C57Bl/6 animals was found to be sex- and age-dependent. Females of this strain moved significantly slower than males of the same age categories; both 20-week-old males and females with HMSN spent significantly more time for traveling the test distance than 15-week-old animals and demonstrated more motor failures. Thus, symptoms of HMSN are more pronounced in females (probably due to the specificity of the hormonal background in the latter), and the severity of pathology increases with age. The balance beam test appears acceptable for obtaining easily interpretable quantitative characteristics of the quality of locomotion control in experimental animal models of neuropathies.Publication Global, regional, and national burden of stroke and its risk factors, 1990-2021: a systematic analysis for the Global Burden of Disease Study 2021(2024-10-23) Korzh, OleksiiBackground: Up-to-date estimates of stroke burden and attributable risks and their trends at global, regional, and national levels are essential for evidence-based health care, prevention, and resource allocation planning. We aimed to provide such estimates for the period 1990-2021. Methods: We estimated incidence, prevalence, death, and disability-adjusted life-year (DALY) counts and age-standardised rates per 100 000 people per year for overall stroke, ischaemic stroke, intracerebral haemorrhage, and subarachnoid haemorrhage, for 204 countries and territories from 1990 to 2021. We also calculated burden of stroke attributable to 23 risk factors and six risk clusters (air pollution, tobacco smoking, behavioural, dietary, environmental, and metabolic risks) at the global and regional levels (21 GBD regions and Socio-demographic Index [SDI] quintiles), using the standard GBD methodology. 95% uncertainty intervals (UIs) for each individual future estimate were derived from the 2·5th and 97·5th percentiles of distributions generated from propagating 500 draws through the multistage computational pipeline. Findings: In 2021, stroke was the third most common GBD level 3 cause of death (7·3 million [95% UI 6·6-7·8] deaths; 10·7% [9·8-11·3] of all deaths) after ischaemic heart disease and COVID-19, and the fourth most common cause of DALYs (160·5 million [147·8-171·6] DALYs; 5·6% [5·0-6·1] of all DALYs). In 2021, there were 93·8 million (89·0-99·3) prevalent and 11·9 million (10·7-13·2) incident strokes. We found disparities in stroke burden and risk factors by GBD region, country or territory, and SDI, as well as a stagnation in the reduction of incidence from 2015 onwards, and even some increases in the stroke incidence, death, prevalence, and DALY rates in southeast Asia, east Asia, and Oceania, countries with lower SDI, and people younger than 70 years. Globally, ischaemic stroke constituted 65·3% (62·4-67·7), intracerebral haemorrhage constituted 28·8% (28·3-28·8), and subarachnoid haemorrhage constituted 5·8% (5·7-6·0) of incident strokes. There were substantial increases in DALYs attributable to high BMI (88·2% [53·4-117·7]), high ambient temperature (72·4% [51·1 to 179·5]), high fasting plasma glucose (32·1% [26·7-38·1]), diet high in sugar-sweetened beverages (23·4% [12·7-35·7]), low physical activity (11·3% [1·8-34·9]), high systolic blood pressure (6·7% [2·5-11·6]), lead exposure (6·5% [4·5-11·2]), and diet low in omega-6 polyunsaturated fatty acids (5·3% [0·5-10·5]). Interpretation: Stroke burden has increased from 1990 to 2021, and the contribution of several risk factors has also increased. Effective, accessible, and affordable measures to improve stroke surveillance, prevention (with the emphasis on blood pressure, lifestyle, and environmental factors), acute care, and rehabilitation need to be urgently implemented across all countries to reduce stroke burden.Publication Forecasting the effects of smoking prevalence scenarios on years of life lost and life expectancy from 2022 to 2050: a systematic analysis for the Global Burden of Disease Study 2021(2024-10-09) Korzh, OleksiiBackground: Smoking is the leading behavioural risk factor for mortality globally, accounting for more than 175 million deaths and nearly 4·30 billion years of life lost (YLLs) from 1990 to 2021. The pace of decline in smoking prevalence has slowed in recent years for many countries, and although strategies have recently been proposed to achieve tobacco-free generations, none have been implemented to date. Assessing what could happen if current trends in smoking prevalence persist, and what could happen if additional smoking prevalence reductions occur, is important for communicating the effect of potential smoking policies. Methods: In this analysis, we use the Institute for Health Metrics and Evaluation's Future Health Scenarios platform to forecast the effects of three smoking prevalence scenarios on all-cause and cause-specific YLLs and life expectancy at birth until 2050. YLLs were computed for each scenario using the Global Burden of Disease Study 2021 reference life table and forecasts of cause-specific mortality under each scenario. The reference scenario forecasts what could occur if past smoking prevalence and other risk factor trends continue, the Tobacco Smoking Elimination as of 2023 (Elimination-2023) scenario quantifies the maximum potential future health benefits from assuming zero percent smoking prevalence from 2023 onwards, whereas the Tobacco Smoking Elimination by 2050 (Elimination-2050) scenario provides estimates for countries considering policies to steadily reduce smoking prevalence to 5%. Together, these scenarios underscore the magnitude of health benefits that could be reached by 2050 if countries take decisive action to eliminate smoking. The 95% uncertainty interval (UI) of estimates is based on the 2·5th and 97·5th percentile of draws that were carried through the multistage computational framework. Findings: Global age-standardised smoking prevalence was estimated to be 28·5% (95% UI 27·9-29·1) among males and 5·96% (5·76-6·21) among females in 2022. In the reference scenario, smoking prevalence declined by 25·9% (25·2-26·6) among males, and 30·0% (26·1-32·1) among females from 2022 to 2050. Under this scenario, we forecast a cumulative 29·3 billion (95% UI 26·8-32·4) overall YLLs among males and 22·2 billion (20·1-24·6) YLLs among females over this period. Life expectancy at birth under this scenario would increase from 73·6 years (95% UI 72·8-74·4) in 2022 to 78·3 years (75·9-80·3) in 2050. Under our Elimination-2023 scenario, we forecast 2·04 billion (95% UI 1·90-2·21) fewer cumulative YLLs by 2050 compared with the reference scenario, and life expectancy at birth would increase to 77·6 years (95% UI 75·1-79·6) among males and 81·0 years (78·5-83·1) among females. Under our Elimination-2050 scenario, we forecast 735 million (675-808) and 141 million (131-154) cumulative YLLs would be avoided among males and females, respectively. Life expectancy in 2050 would increase to 77·1 years (95% UI 74·6-79·0) among males and 80·8 years (78·3-82·9) among females. Interpretation: Existing tobacco policies must be maintained if smoking prevalence is to continue to decline as forecast by the reference scenario. In addition, substantial smoking-attributable burden can be avoided by accelerating the pace of smoking elimination. Implementation of new tobacco control policies are crucial in avoiding additional smoking-attributable burden in the coming decades and to ensure that the gains won over the past three decades are not lost.Item Клініко-неврологічна характеристика спадкової сенсо-мотороної нейропатії 1А типу(2020) Говбах, Ірина Олекандрівна; Гречаніна, Олена Яківна; Молодан, Людмила ВолодимирівнаУ статті представлені результати власного дослідження, метою якого було вивчення клініко-неврологічних характеристик спадкової сенсо-моторної нейропатії (ССМН) 1А типу. Детально обстежено 153 пацієнта (82 чоловіки і 71 жінка) з 214 сімей. Обстежено були пацієнти як з раніше діагностованою ССМН 1А типу, так і з вперше виявленою. Переважна більшість пацієнтів (72,5%) мали тривалість захворювання більше 10 років. Всім обстежуваним хворим проводився наступний обсяг діагностичних досліджень: збір скарг та анамнез основного захворювання; дослідження соматичного і неврологічного статусу; клініко-генеалогічний аналіз родоводу. Комплекс додаткових методів дослі дження включав: клінічний аналіз крові і сечі; дослідження в крові рівня глюкози, сечовини, креатиніну, кальцію, печінкових ферментів, білкового складу; УЗД органів черевної порожнини, рентгенографії органів грудної клітини, грудного і поперекового відділів хребта, аналіз крові на ВІЛ-інфекцію. При вивченні клінічної картини захворювання, обстежені були розділені на 3 групи в залежності від тривалості захворювання: 1-а група – тривалість захворювання менше 5 років; 2-я група – тривалість захворювання від 5 до 10 років; 3-тя група – тривалість захворювання біль ше 10 років. На підставі даних проведеного дослідження за участю 153 хворих основними клініко-неврологічними характеристиками спадкової сенсо-моторної нейропатії 1А типу є: сімейний анамнез з аутосомно-домінантним ти пом успадкування; маніфестація захворювання у віці до 20 років; симетричність ураження; прогресуючий парез і гіпотрофія м’язів нижніх верхніх кінцівок; зниження рефлекторної сфери; порушення всіх видів чутливості кінцівок; деформація стопи за типом Фридрейха; деформації кистей; повільно прогресуючий тип перебігу захворювання з переважанням легкого та середнього ступеня тяжкості захворювання. The article presents the results of our own study, the purpose of which was to study the clinical and neurological characteristics of hereditary sensorimotor neuropathy type 1A. 153 patients (82 men and 71 women) from 214 families were examined in detail. Patients with both previously diagnosed HSMN type 1A and newly diagnosed were examined. The vast majority of patients (72.5%) had a disease duration of more than 10 years. All examined patients underwent the following volume of diagnostic tests: collection of complaints and history of the underlying disease; study of somatic and neurological status; clinical and genealogical analysis of pedigree. A set of additional research methods included: clinical analysis of blood and urine; blood tests for glucose, urea, creatinine, calcium, liver enzymes, protein composition; Ultrasound of the abdominal cavity, radiography of the chest, thoracic and lumbar spine, blood tests for HIV. When studying the clinical picture of the disease, the subjects were divided into 3 groups depending on the duration of the disease: 1st group - the duration of the disease is less than 5 years; 2nd group - the duration of the disease from 5 to 10 years; 3rd group, the duration of the disease upper extremities; reduction of the refl ex sphere; violation of all types of sensitivity of the extremities; Friedreich-type foot deformity; deformation of the hands; slowly progressive type of disease with a predominance of mild to moderate disease.Publication Global burden and strength of evidence for 88 risk factors in 204 countries and 811 subnational locations, 1990–2021: a systematic analysis for the Global Burden of Disease Study 2021(2024-07-18) Korzh, OleksiiBackground: Understanding the health consequences associated with exposure to risk factors is necessary to inform public health policy and practice. To systematically quantify the contributions of risk factor exposures to specific health outcomes, the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021 aims to provide comprehensive estimates of exposure levels, relative health risks, and attributable burden of disease for 88 risk factors in 204 countries and territories and 811 subnational locations, from 1990 to 2021. Methods: The GBD 2021 risk factor analysis used data from 54 561 total distinct sources to produce epidemiological estimates for 88 risk factors and their associated health outcomes for a total of 631 risk-outcome pairs. Pairs were included on the basis of data-driven determination of a risk-outcome association. Age-sex-location-year-specific estimates were generated at global, regional, and national levels. Our approach followed the comparative risk assessment framework predicated on a causal web of hierarchically organised, potentially combinative, modifiable risks. Relative risks (RRs) of a given outcome occurring as a function of risk factor exposure were estimated separately for each risk-outcome pair, and summary exposure values (SEVs), representing risk-weighted exposure prevalence, and theoretical minimum risk exposure levels (TMRELs) were estimated for each risk factor. These estimates were used to calculate the population attributable fraction (PAF; ie, the proportional change in health risk that would occur if exposure to a risk factor were reduced to the TMREL). The product of PAFs and disease burden associated with a given outcome, measured in disability-adjusted life-years (DALYs), yielded measures of attributable burden (ie, the proportion of total disease burden attributable to a particular risk factor or combination of risk factors). Adjustments for mediation were applied to account for relationships involving risk factors that act indirectly on outcomes via intermediate risks. Attributable burden estimates were stratified by Socio-demographic Index (SDI) quintile and presented as counts, age-standardised rates, and rankings. To complement estimates of RR and attributable burden, newly developed burden of proof risk function (BPRF) methods were applied to yield supplementary, conservative interpretations of risk-outcome associations based on the consistency of underlying evidence, accounting for unexplained heterogeneity between input data from different studies. Estimates reported represent the mean value across 500 draws from the estimate's distribution, with 95% uncertainty intervals (UIs) calculated as the 2·5th and 97·5th percentile values across the draws. Findings: Among the specific risk factors analysed for this study, particulate matter air pollution was the leading contributor to the global disease burden in 2021, contributing 8·0% (95% UI 6·7-9·4) of total DALYs, followed by high systolic blood pressure (SBP; 7·8% [6·4-9·2]), smoking (5·7% [4·7-6·8]), low birthweight and short gestation (5·6% [4·8-6·3]), and high fasting plasma glucose (FPG; 5·4% [4·8-6·0]). For younger demographics (ie, those aged 0-4 years and 5-14 years), risks such as low birthweight and short gestation and unsafe water, sanitation, and handwashing (WaSH) were among the leading risk factors, while for older age groups, metabolic risks such as high SBP, high body-mass index (BMI), high FPG, and high LDL cholesterol had a greater impact. From 2000 to 2021, there was an observable shift in global health challenges, marked by a decline in the number of all-age DALYs broadly attributable to behavioural risks (decrease of 20·7% [13·9-27·7]) and environmental and occupational risks (decrease of 22·0% [15·5-28·8]), coupled with a 49·4% (42·3-56·9) increase in DALYs attributable to metabolic risks, all reflecting ageing populations and changing lifestyles on a global scale. Age-standardised global DALY rates attributable to high BMI and high FPG rose considerably (15·7% [9·9-21·7] for high BMI and 7·9% [3·3-12·9] for high FPG) over this period, with exposure to these risks increasing annually at rates of 1·8% (1·6-1·9) for high BMI and 1·3% (1·1-1·5) for high FPG. By contrast, the global risk-attributable burden and exposure to many other risk factors declined, notably for risks such as child growth failure and unsafe water source, with age-standardised attributable DALYs decreasing by 71·5% (64·4-78·8) for child growth failure and 66·3% (60·2-72·0) for unsafe water source. We separated risk factors into three groups according to trajectory over time: those with a decreasing attributable burden, due largely to declining risk exposure (eg, diet high in trans-fat and household air pollution) but also to proportionally smaller child and youth populations (eg, child and maternal malnutrition); those for which the burden increased moderately in spite of declining risk exposure, due largely to population ageing (eg, smoking); and those for which the burden increased considerably due to both increasing risk exposure and population ageing (eg, ambient particulate matter air pollution, high BMI, high FPG, and high SBP). Interpretation: Substantial progress has been made in reducing the global disease burden attributable to a range of risk factors, particularly those related to maternal and child health, WaSH, and household air pollution. Maintaining efforts to minimise the impact of these risk factors, especially in low SDI locations, is necessary to sustain progress. Successes in moderating the smoking-related burden by reducing risk exposure highlight the need to advance policies that reduce exposure to other leading risk factors such as ambient particulate matter air pollution and high SBP. Troubling increases in high FPG, high BMI, and other risk factors related to obesity and metabolic syndrome indicate an urgent need to identify and implement interventions.Publication Burden of disease scenarios for 204 countries and territories, 2022–2050: a forecasting analysis for the Global Burden of Disease Study 2021(2024-05-18) Korzh, OleksiiBackground: Future trends in disease burden and drivers of health are of great interest to policy makers and the public at large. This information can be used for policy and long-term health investment, planning, and prioritisation. We have expanded and improved upon previous forecasts produced as part of the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) and provide a reference forecast (the most likely future), and alternative scenarios assessing disease burden trajectories if selected sets of risk factors were eliminated from current levels by 2050. Methods: Using forecasts of major drivers of health such as the Socio-demographic Index (SDI; a composite measure of lag-distributed income per capita, mean years of education, and total fertility under 25 years of age) and the full set of risk factor exposures captured by GBD, we provide cause-specific forecasts of mortality, years of life lost (YLLs), years lived with disability (YLDs), and disability-adjusted life-years (DALYs) by age and sex from 2022 to 2050 for 204 countries and territories, 21 GBD regions, seven super-regions, and the world. All analyses were done at the cause-specific level so that only risk factors deemed causal by the GBD comparative risk assessment influenced future trajectories of mortality for each disease. Cause-specific mortality was modelled using mixed-effects models with SDI and time as the main covariates, and the combined impact of causal risk factors as an offset in the model. At the all-cause mortality level, we captured unexplained variation by modelling residuals with an autoregressive integrated moving average model with drift attenuation. These all-cause forecasts constrained the cause-specific forecasts at successively deeper levels of the GBD cause hierarchy using cascading mortality models, thus ensuring a robust estimate of cause-specific mortality. For non-fatal measures (eg, low back pain), incidence and prevalence were forecasted from mixed-effects models with SDI as the main covariate, and YLDs were computed from the resulting prevalence forecasts and average disability weights from GBD. Alternative future scenarios were constructed by replacing appropriate reference trajectories for risk factors with hypothetical trajectories of gradual elimination of risk factor exposure from current levels to 2050. The scenarios were constructed from various sets of risk factors: environmental risks (Safer Environment scenario), risks associated with communicable, maternal, neonatal, and nutritional diseases (CMNNs; Improved Childhood Nutrition and Vaccination scenario), risks associated with major non-communicable diseases (NCDs; Improved Behavioural and Metabolic Risks scenario), and the combined effects of these three scenarios. Using the Shared Socioeconomic Pathways climate scenarios SSP2-4.5 as reference and SSP1-1.9 as an optimistic alternative in the Safer Environment scenario, we accounted for climate change impact on health by using the most recent Intergovernmental Panel on Climate Change temperature forecasts and published trajectories of ambient air pollution for the same two scenarios. Life expectancy and healthy life expectancy were computed using standard methods. The forecasting framework includes computing the age-sex-specific future population for each location and separately for each scenario. 95% uncertainty intervals (UIs) for each individual future estimate were derived from the 2·5th and 97·5th percentiles of distributions generated from propagating 500 draws through the multistage computational pipeline. Findings: In the reference scenario forecast, global and super-regional life expectancy increased from 2022 to 2050, but improvement was at a slower pace than in the three decades preceding the COVID-19 pandemic (beginning in 2020). Gains in future life expectancy were forecasted to be greatest in super-regions with comparatively low life expectancies (such as sub-Saharan Africa) compared with super-regions with higher life expectancies (such as the high-income super-region), leading to a trend towards convergence in life expectancy across locations between now and 2050. At the super-region level, forecasted healthy life expectancy patterns were similar to those of life expectancies. Forecasts for the reference scenario found that health will improve in the coming decades, with all-cause age-standardised DALY rates decreasing in every GBD super-region. The total DALY burden measured in counts, however, will increase in every super-region, largely a function of population ageing and growth. We also forecasted that both DALY counts and age-standardised DALY rates will continue to shift from CMNNs to NCDs, with the most pronounced shifts occurring in sub-Saharan Africa (60·1% [95% UI 56·8-63·1] of DALYs were from CMNNs in 2022 compared with 35·8% [31·0-45·0] in 2050) and south Asia (31·7% [29·2-34·1] to 15·5% [13·7-17·5]). This shift is reflected in the leading global causes of DALYs, with the top four causes in 2050 being ischaemic heart disease, stroke, diabetes, and chronic obstructive pulmonary disease, compared with 2022, with ischaemic heart disease, neonatal disorders, stroke, and lower respiratory infections at the top. The global proportion of DALYs due to YLDs likewise increased from 33·8% (27·4-40·3) to 41·1% (33·9-48·1) from 2022 to 2050, demonstrating an important shift in overall disease burden towards morbidity and away from premature death. The largest shift of this kind was forecasted for sub-Saharan Africa, from 20·1% (15·6-25·3) of DALYs due to YLDs in 2022 to 35·6% (26·5-43·0) in 2050. In the assessment of alternative future scenarios, the combined effects of the scenarios (Safer Environment, Improved Childhood Nutrition and Vaccination, and Improved Behavioural and Metabolic Risks scenarios) demonstrated an important decrease in the global burden of DALYs in 2050 of 15·4% (13·5-17·5) compared with the reference scenario, with decreases across super-regions ranging from 10·4% (9·7-11·3) in the high-income super-region to 23·9% (20·7-27·3) in north Africa and the Middle East. The Safer Environment scenario had its largest decrease in sub-Saharan Africa (5·2% [3·5-6·8]), the Improved Behavioural and Metabolic Risks scenario in north Africa and the Middle East (23·2% [20·2-26·5]), and the Improved Nutrition and Vaccination scenario in sub-Saharan Africa (2·0% [-0·6 to 3·6]). Interpretation: Globally, life expectancy and age-standardised disease burden were forecasted to improve between 2022 and 2050, with the majority of the burden continuing to shift from CMNNs to NCDs. That said, continued progress on reducing the CMNN disease burden will be dependent on maintaining investment in and policy emphasis on CMNN disease prevention and treatment. Mostly due to growth and ageing of populations, the number of deaths and DALYs due to all causes combined will generally increase. By constructing alternative future scenarios wherein certain risk exposures are eliminated by 2050, we have shown that opportunities exist to substantially improve health outcomes in the future through concerted efforts to prevent exposure to well established risk factors and to expand access to key health interventions.Publication Global fertility in 204 countries and territories, 1950-2021, with forecasts to 2100: a comprehensive demographic analysis for the Global Burden of Disease Study 2021(2024-05-18) Korzh, OleksiiBackground: Accurate assessments of current and future fertility-including overall trends and changing population age structures across countries and regions-are essential to help plan for the profound social, economic, environmental, and geopolitical challenges that these changes will bring. Estimates and projections of fertility are necessary to inform policies involving resource and health-care needs, labour supply, education, gender equality, and family planning and support. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021 produced up-to-date and comprehensive demographic assessments of key fertility indicators at global, regional, and national levels from 1950 to 2021 and forecast fertility metrics to 2100 based on a reference scenario and key policy-dependent alternative scenarios. Methods: To estimate fertility indicators from 1950 to 2021, mixed-effects regression models and spatiotemporal Gaussian process regression were used to synthesise data from 8709 country-years of vital and sample registrations, 1455 surveys and censuses, and 150 other sources, and to generate age-specific fertility rates (ASFRs) for 5-year age groups from age 10 years to 54 years. ASFRs were summed across age groups to produce estimates of total fertility rate (TFR). Livebirths were calculated by multiplying ASFR and age-specific female population, then summing across ages 10-54 years. To forecast future fertility up to 2100, our Institute for Health Metrics and Evaluation (IHME) forecasting model was based on projections of completed cohort fertility at age 50 years (CCF50; the average number of children born over time to females from a specified birth cohort), which yields more stable and accurate measures of fertility than directly modelling TFR. CCF50 was modelled using an ensemble approach in which three sub-models (with two, three, and four covariates variously consisting of female educational attainment, contraceptive met need, population density in habitable areas, and under-5 mortality) were given equal weights, and analyses were conducted utilising the MR-BRT (meta-regression-Bayesian, regularised, trimmed) tool. To capture time-series trends in CCF50 not explained by these covariates, we used a first-order autoregressive model on the residual term. CCF50 as a proportion of each 5-year ASFR was predicted using a linear mixed-effects model with fixed-effects covariates (female educational attainment and contraceptive met need) and random intercepts for geographical regions. Projected TFRs were then computed for each calendar year as the sum of single-year ASFRs across age groups. The reference forecast is our estimate of the most likely fertility future given the model, past fertility, forecasts of covariates, and historical relationships between covariates and fertility. We additionally produced forecasts for multiple alternative scenarios in each location: the UN Sustainable Development Goal (SDG) for education is achieved by 2030; the contraceptive met need SDG is achieved by 2030; pro-natal policies are enacted to create supportive environments for those who give birth; and the previous three scenarios combined. Uncertainty from past data inputs and model estimation was propagated throughout analyses by taking 1000 draws for past and present fertility estimates and 500 draws for future forecasts from the estimated distribution for each metric, with 95% uncertainty intervals (UIs) given as the 2·5 and 97·5 percentiles of the draws. To evaluate the forecasting performance of our model and others, we computed skill values-a metric assessing gain in forecasting accuracy-by comparing predicted versus observed ASFRs from the past 15 years (2007-21). A positive skill metric indicates that the model being evaluated performs better than the baseline model (here, a simplified model holding 2007 values constant in the future), and a negative metric indicates that the evaluated model performs worse than baseline. Findings: During the period from 1950 to 2021, global TFR more than halved, from 4·84 (95% UI 4·63-5·06) to 2·23 (2·09-2·38). Global annual livebirths peaked in 2016 at 142 million (95% UI 137-147), declining to 129 million (121-138) in 2021. Fertility rates declined in all countries and territories since 1950, with TFR remaining above 2·1-canonically considered replacement-level fertility-in 94 (46·1%) countries and territories in 2021. This included 44 of 46 countries in sub-Saharan Africa, which was the super-region with the largest share of livebirths in 2021 (29·2% [28·7-29·6]). 47 countries and territories in which lowest estimated fertility between 1950 and 2021 was below replacement experienced one or more subsequent years with higher fertility; only three of these locations rebounded above replacement levels. Future fertility rates were projected to continue to decline worldwide, reaching a global TFR of 1·83 (1·59-2·08) in 2050 and 1·59 (1·25-1·96) in 2100 under the reference scenario. The number of countries and territories with fertility rates remaining above replacement was forecast to be 49 (24·0%) in 2050 and only six (2·9%) in 2100, with three of these six countries included in the 2021 World Bank-defined low-income group, all located in the GBD super-region of sub-Saharan Africa. The proportion of livebirths occurring in sub-Saharan Africa was forecast to increase to more than half of the world's livebirths in 2100, to 41·3% (39·6-43·1) in 2050 and 54·3% (47·1-59·5) in 2100. The share of livebirths was projected to decline between 2021 and 2100 in most of the six other super-regions-decreasing, for example, in south Asia from 24·8% (23·7-25·8) in 2021 to 16·7% (14·3-19·1) in 2050 and 7·1% (4·4-10·1) in 2100-but was forecast to increase modestly in the north Africa and Middle East and high-income super-regions. Forecast estimates for the alternative combined scenario suggest that meeting SDG targets for education and contraceptive met need, as well as implementing pro-natal policies, would result in global TFRs of 1·65 (1·40-1·92) in 2050 and 1·62 (1·35-1·95) in 2100. The forecasting skill metric values for the IHME model were positive across all age groups, indicating that the model is better than the constant prediction. Interpretation: Fertility is declining globally, with rates in more than half of all countries and territories in 2021 below replacement level. Trends since 2000 show considerable heterogeneity in the steepness of declines, and only a small number of countries experienced even a slight fertility rebound after their lowest observed rate, with none reaching replacement level. Additionally, the distribution of livebirths across the globe is shifting, with a greater proportion occurring in the lowest-income countries. Future fertility rates will continue to decline worldwide and will remain low even under successful implementation of pro-natal policies. These changes will have far-reaching economic and societal consequences due to ageing populations and declining workforces in higher-income countries, combined with an increasing share of livebirths among the already poorest regions of the world.Publication Global incidence, prevalence, years lived with disability (YLDs), disability-adjusted life-years (DALYs), and healthy life expectancy (HALE) for 371 diseases and injuries in 204 countries and territories and 811 subnational locations, 1990-2021: a systematic analysis for the Global Burden of Disease Study 2021(2024-05-18) Korzh, OleksiiBackground: Detailed, comprehensive, and timely reporting on population health by underlying causes of disability and premature death is crucial to understanding and responding to complex patterns of disease and injury burden over time and across age groups, sexes, and locations. The availability of disease burden estimates can promote evidence-based interventions that enable public health researchers, policy makers, and other professionals to implement strategies that can mitigate diseases. It can also facilitate more rigorous monitoring of progress towards national and international health targets, such as the Sustainable Development Goals. For three decades, the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) has filled that need. A global network of collaborators contributed to the production of GBD 2021 by providing, reviewing, and analysing all available data. GBD estimates are updated routinely with additional data and refined analytical methods. GBD 2021 presents, for the first time, estimates of health loss due to the COVID-19 pandemic. Methods: The GBD 2021 disease and injury burden analysis estimated years lived with disability (YLDs), years of life lost (YLLs), disability-adjusted life-years (DALYs), and healthy life expectancy (HALE) for 371 diseases and injuries using 100 983 data sources. Data were extracted from vital registration systems, verbal autopsies, censuses, household surveys, disease-specific registries, health service contact data, and other sources. YLDs were calculated by multiplying cause-age-sex-location-year-specific prevalence of sequelae by their respective disability weights, for each disease and injury. YLLs were calculated by multiplying cause-age-sex-location-year-specific deaths by the standard life expectancy at the age that death occurred. DALYs were calculated by summing YLDs and YLLs. HALE estimates were produced using YLDs per capita and age-specific mortality rates by location, age, sex, year, and cause. 95% uncertainty intervals (UIs) were generated for all final estimates as the 2·5th and 97·5th percentiles values of 500 draws. Uncertainty was propagated at each step of the estimation process. Counts and age-standardised rates were calculated globally, for seven super-regions, 21 regions, 204 countries and territories (including 21 countries with subnational locations), and 811 subnational locations, from 1990 to 2021. Here we report data for 2010 to 2021 to highlight trends in disease burden over the past decade and through the first 2 years of the COVID-19 pandemic. Findings: Global DALYs increased from 2·63 billion (95% UI 2·44-2·85) in 2010 to 2·88 billion (2·64-3·15) in 2021 for all causes combined. Much of this increase in the number of DALYs was due to population growth and ageing, as indicated by a decrease in global age-standardised all-cause DALY rates of 14·2% (95% UI 10·7-17·3) between 2010 and 2019. Notably, however, this decrease in rates reversed during the first 2 years of the COVID-19 pandemic, with increases in global age-standardised all-cause DALY rates since 2019 of 4·1% (1·8-6·3) in 2020 and 7·2% (4·7-10·0) in 2021. In 2021, COVID-19 was the leading cause of DALYs globally (212·0 million [198·0-234·5] DALYs), followed by ischaemic heart disease (188·3 million [176·7-198·3]), neonatal disorders (186·3 million [162·3-214·9]), and stroke (160·4 million [148·0-171·7]). However, notable health gains were seen among other leading communicable, maternal, neonatal, and nutritional (CMNN) diseases. Globally between 2010 and 2021, the age-standardised DALY rates for HIV/AIDS decreased by 47·8% (43·3-51·7) and for diarrhoeal diseases decreased by 47·0% (39·9-52·9). Non-communicable diseases contributed 1·73 billion (95% UI 1·54-1·94) DALYs in 2021, with a decrease in age-standardised DALY rates since 2010 of 6·4% (95% UI 3·5-9·5). Between 2010 and 2021, among the 25 leading Level 3 causes, age-standardised DALY rates increased most substantially for anxiety disorders (16·7% [14·0-19·8]), depressive disorders (16·4% [11·9-21·3]), and diabetes (14·0% [10·0-17·4]). Age-standardised DALY rates due to injuries decreased globally by 24·0% (20·7-27·2) between 2010 and 2021, although improvements were not uniform across locations, ages, and sexes. Globally, HALE at birth improved slightly, from 61·3 years (58·6-63·6) in 2010 to 62·2 years (59·4-64·7) in 2021. However, despite this overall increase, HALE decreased by 2·2% (1·6-2·9) between 2019 and 2021. Interpretation: Putting the COVID-19 pandemic in the context of a mutually exclusive and collectively exhaustive list of causes of health loss is crucial to understanding its impact and ensuring that health funding and policy address needs at both local and global levels through cost-effective and evidence-based interventions. A global epidemiological transition remains underway. Our findings suggest that prioritising non-communicable disease prevention and treatment policies, as well as strengthening health systems, continues to be crucially important. The progress on reducing the burden of CMNN diseases must not stall; although global trends are improving, the burden of CMNN diseases remains unacceptably high. Evidence-based interventions will help save the lives of young children and mothers and improve the overall health and economic conditions of societies across the world. Governments and multilateral organisations should prioritise pandemic preparedness planning alongside efforts to reduce the burden of diseases and injuries that will strain resources in the coming decades.
- «
- 1 (current)
- 2
- 3
- »